
HRIBO Documentation
Release 1.4.4

Rick Gelhausen

Jul 28, 2021

DOCUMENTATION

1 HRIBO 1
1.1 Introduction . 1
1.2 Program flowchart . 1
1.3 Requirements . 2
1.4 Tools . 2
1.5 Input files . 3
1.6 Output files . 5
1.7 Tool Parameters . 7
1.8 Report . 7
1.9 Example-workflow . 7
1.10 References . 7

2 Workflow configuration 9
2.1 Default workflow . 9
2.2 No differential expression . 10
2.3 Activating DeepRibo . 10
2.4 Paired-end support . 12

3 Analysis result files 13
3.1 ORF Predictions . 13
3.2 Quality control . 15
3.3 genome-browser . 17
3.4 Differential Expression . 18
3.5 Metagene Analysis . 19
3.6 Additional output . 20

4 Example workflow 23
4.1 Setup . 23
4.2 Retrieve and prepare input files . 23
4.3 Running the workflow . 26
4.4 Results . 28
4.5 Runtime . 28
4.6 References . 29

5 Extended workflow 31
5.1 Setup . 31
5.2 Retrieve and prepare input files . 31
5.3 Running the workflow . 34
5.4 Results . 36
5.5 Runtime . 37

i

5.6 References . 37

6 Frequently asked questions 39
6.1 Q: When using singularity I get ERROR : Failed to set effective UID to 0. 39

Bibliography 41

ii

CHAPTER

ONE

HRIBO

1.1 Introduction

HRIBO is a workflow for the analysis of prokaryotic Ribo-Seq data. HRIBO is available on github. It includes among
others, prediction of novel open reading frames (ORFs), metagene profiling, quality control and differential expres-
sion analysis. The workflow is based on the workflow management system snakemake and handles installation of all
dependencies via bioconda [GruningDSjodin+17] and docker, as well as all processings steps. The source code of
HRIBO is open source and available under the License GNU General Public License 3. Installation and basic usage
is described below.

Note: For a detailed step by step tutorial on how to use this workflow on a sample dataset, please refer to our example-
workflow.

1.2 Program flowchart

The following flowchart describes the processing steps of the workflow and how they are connected:

1

https://github.com/RickGelhausen/HRIBO
https://bioconda.github.io/
https://www.docker.com/

HRIBO Documentation, Release 1.4.4

1.3 Requirements

In the following, we describe all the required files and tools needed to run our workflow.

1.4 Tools

1.4.1 miniconda3

As this workflow is based on the workflow management system snakemake [KosterR18], Snakemake will download
all necessary dependencies via conda.

We strongly recommend installing miniconda3 with python3.7.

After downloading the miniconda3 version suiting your linux system, execute the downloaded bash file and follow
the instructions given.

1.4.2 snakemake

Note: HRIBO requires snakemake (version>=5.5.1)

The newest version of snakemake as well as the squashfs-tools required for singularity can be downloaded via
conda using the following command:

conda create -c conda-forge -c bioconda -n snakemake snakemake squashfs-tools

This creates a new conda environment called snakemake and installs snakemake into the environment. The environ-
ment can be activated using:

conda activate snakemake

and deactivated using:

conda deactivate

1.4.3 singularity

Warning: This dependency is only required if you intend to use the prediction tool deepribo. The rest of the
workflow does not require singularity. deepribo is deactivated by default. For more details on activating
deepribo, please refer to Activating DeepRibo.

In order to support docker container, snakemake requires singularity. This is used to retrieve tools that are not available
on conda as of now.

An in-depth installation tutorial for singularity can be found on the singularity webpage.

Note: we strongly suggest to install the newest version of singularity. We tested our worklow on singularity
v3.4.2.

2 Chapter 1. HRIBO

https://snakemake.readthedocs.io/en/stable/
https://conda.io/projects/conda/en/latest/user-guide/install/index.html
https://conda.io/miniconda.html
https://www.docker.com/
https://sylabs.io/docs/
https://sylabs.io/guides/3.0/user-guide/installation.html

HRIBO Documentation, Release 1.4.4

1.4.4 HRIBO

Using the workflow requires HRIBO. The latest version is available on our GitHub page.

In order to run the workflow, we suggest that you download the HRIBO into your project directory. The following
command creates an example directory and changes into it:

mkdir project
cd project

Now, download and unpack the latest version of HRIBO by entering the following commands:

wget https://github.com/RickGelhausen/HRIBO/archive/1.5.1.tar.gz
tar -xzf 1.5.1.tar.gz; mv HRIBO-1.5.1 HRIBO; rm 1.5.1.tar.gz;

HRIBO is now in a subdirectory of your project directory.

1.5 Input files

Several input files are required in order to run the workflow, a genome file (.fa), an annotation file (.gff/.gtf) and
compressed sequencing files (.fastq.gz).

File name Description
annotation.gff user-provided annotation file with genomic features
genome.fa user-provided genome file containing the genome sequence
<method>-<conditon>-<replicate>.fastq.gz user-provided compressed sequencing files
config.yaml configuration file to customize the workflow
samples.tsv sample file describing the relation between the input fastq files

1.5.1 annotation.gff and genome.fa

We recommend retrieving both the genome and the annotation files for your organism from National Center for Biotech-
nology Information (NCBI) or Ensembl Genomes [ZAA+18].

Warning: if you use custom annotation files, ensure that you adhere to the gtf/gff standard. Wrongly formatted
files are likely to cause problems with downstream tools.

Note: For detailed information about downloading and unpacking these files, please refer to our example-workflow.

1.5. Input files 3

https://www.ncbi.nlm.nih.gov/
https://www.ncbi.nlm.nih.gov/
http://ensemblgenomes.org/

HRIBO Documentation, Release 1.4.4

1.5.2 input .fastq files

These are the input files provided by the user. Both single end and paired end data is supported.

Note: As most downstream tools do not support paired end data, we combine the paired end data into single end data
using flash2 . For more information about how to use paired-end data please refer to the workflow-configuration.

Note: Please ensure that you compress your files in .gz format.

Please ensure that you move all input .fastq.gz files into a folder called fastq (Located in your project folder):

mkdir fastq
cp *.fastq.gz fastq/

1.5.3 Sample sheet and configuration file

In order to run HRIBO, you have to provide a sample sheet and a configuration file. There are templates for both files
available in the HRIBO folder, in the subfolder templates. The configuration file is used to allow the user to easily
customize certain settings, like the adapter sequence. The sample sheet is used to specify the relation of the input
.fastq files (condition / replicate etc. . .)

Copy the templates of the sample sheet and the configuration file into the HRIBO folder:

cp HRIBO/templates/samples.tsv HRIBO/
cp HRIBO/templates/config.yaml HRIBO/

Customize the config.yaml using your preferred editor. It contains the following variables:

• adapter: specify the adapter sequence to be used.

• samples: the location of the samples sheet created in the previous step.

• alternativestartcodons: specify a comma separated list of alternative start codons.

• differentialexpression: specify whether you want to activate differential expresssion analysis. (“yes/no”)

• deepribo: specify whether you want to activate deepribo ORF prediction. (“yes/no”)

Edit the sample sheet corresponding to your project. It contains the following variables:

• method: indicates the method used for this project, here RIBO for ribosome profiling and RNA for RNA-seq.

• condition: indicates the applied condition (e.g. A, B, . . .).

• replicate: ID used to distinguish between the different replicates (e.g. 1,2, . . .)

• inputFile: indicates the according fastq file for a given sample.

Note: If you have paired end data, please ensure that you use the samples_pairedend.tsv file.

As seen in the samples.tsv template:

4 Chapter 1. HRIBO

https://github.com/dstreett/FLASH2

HRIBO Documentation, Release 1.4.4

method condition replicate fastqFile
RIBO A 1 fastq/RIBO-A-1.fastq.gz
RIBO A 2 fastq/RIBO-A-2.fastq.gz
RIBO B 1 fastq/RIBO-B-1.fastq.gz
RIBO B 2 fastq/RIBO-B-2.fastq.gz
RNA A 1 fastq/RNA-A-1.fastq.gz
RNA A 2 fastq/RNA-A-2.fastq.gz
RNA B 1 fastq/RNA-B-1.fastq.gz
RNA B 2 fastq/RNA-B-2.fastq.gz

Note: This is just an example, please refer to our example-workflow for another example.

1.5.4 cluster.yaml

In the HRIBO folder, we provide two <cluster>.yaml files needed by snakemake in order to run on a cluster system:

• sge.yaml - for grid based queuing systems

• torque.yaml - for torque based queuing systems

1.6 Output files

In the following tables all important output files of the workflow are listed.

Note: Files create as intermediate steps of the workflow are omitted from this list. (e.g. .bam files)

Note: For more details about the output files, please refer to the analysis results.

1.6. Output files 5

HRIBO Documentation, Release 1.4.4

1.6.1 Single-file Output

File name Description
samples.xlsx Excel version of the input samples file.
manual.pdf A PDF file describing the analysis.
annotation_total.xlsx Excel file containing detailed measures for every feature in the input annotation using

read counts containing multi-mapping reads.
annotation_unique.xlsx Excel file containing detailed measures for every feature in the input annotation using

read counts containing no multi-mapping reads.
total_read_counts.xlsx Excel file containing read counts with multi-mapping reads.
unique_read_counts.xlsx Excel file containing read counts without multi-mapping reads.
multiqc_report.html Quality control report combining all finding of individual fastQC reports into a well

structured overview file.
heatmap_SpearmanCorr_readCounts.pdfPDF file showing the Spearman correlation between all samples.
predic-
tions_reparation.xlsx

Excel file containing detailed measures for every ORF detected by reparation.

predictions_reparation.gff GFF file containing ORFs detected by reparation, for genome browser visualization.
potentialStartCodons.gff GFF file for genome browser visualization containing all potential start codons in the

input genome.
potentialStopCodons.gff GFF file for genome browser visualization containing all potential stop codons in the

input genome.
potentialRibosomeBind-
ingSite.gff

GFF file for genome browser visualization containing all potential ribosome binding
sites in the input genome.

potentialAlternativeStart-
Codons.gff

GFF file for genome browser visualization containing all potential alternative start
codons in the input genome.

1.6.2 Multi-file Output

File name Description
riborex/<contrast>_sorted.csv Differential expression results by Riborex, sorted by pvalue.
ri-
borex/<contrast>_significant.csv

Differential expression results by Riborex, only significant results. (pvalue <
0.05)

xtail/<contrast>_sorted.csv Differential expression results by xtail, sorted by pvalue.
xtail/<contrast>_significant.csv Differential expression results by xtail, only significant results. (pvalue < 0.05)
xtail/r_<contrast>.pdf Differential expression results by xtail, plot with RPF-to-mRNA ratios.
xtail/fc_<contrast>.pdf Differential expression results by xtail, plot with log2 fold change of both

mRNA and RPF.
<method>-<condition>-
<replicate>.X.Y.Z.bw

BigWig file for genome browser visualization, containing a single nucleotide
mapping around certain regions.

<acces-
sion>_Z.Y_profiling.xlsx/tsv

Excel and tsv files containing raw data of the metagene analysis.

<accession>_Z.Y_profiling.pdf visualization of the metagene analysis.

Note: <contrast> represents a pair of conditions that are being compared.

Note: The BigWig files are available for different normalization methods, strands and regions, X=(min/mil)
Y=(forward/reverse) Z=(fiveprime, threeprime, global, centered).

6 Chapter 1. HRIBO

HRIBO Documentation, Release 1.4.4

1.7 Tool Parameters

The tools used in our workflow are listed below, with links to their respective webpage and a short description.

Tool Version Special parameters used
cutadapt 2.1 Adapter removal and quality trimming
fastQC 0.11.9 Quality control
multiQC 1.8 Quality control report
segemehl 0.3.4 Mapping of reads
flash2 2.2.00 Merging paired end samples into single end
cufflinks 2.2.1 Used to convert gff to gtf
bedtools 2.27.1 Collection of useful processing tools (e.g. read counting etc. . .)
reparation_blast 1.0.9 Prediction of novel Open Reading frames
deepribo 1.1 Prediction of novel Open Reading frames
riborex 2.4.0 Differential expression analysis
xtail 1.1.5 Differential expression analysis

1.8 Report

In order to aggregate the final results into a single folder structure and receive a date-tagged .zip file, you can use the
makereport.sh script.

bash HRIBO/scripts/makereport.sh <reportname>

Note: Examples of how this output can look are available here .

1.9 Example-workflow

A detailed step by step tutorial is available at: example-workflow.

1.10 References

1.7. Tool Parameters 7

https://cutadapt.readthedocs.io/en/stable/
https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://multiqc.info/
https://www.bioinf.uni-leipzig.de/Software/segemehl/
https://github.com/dstreett/FLASH2
http://cole-trapnell-lab.github.io/cufflinks/
https://bedtools.readthedocs.io/en/latest/
https://github.com/RickGelhausen/REPARATION_blast
https://github.com/Biobix/DeepRibo
https://github.com/smithlabcode/riborex
https://github.com/xryanglab/xtail
ftp://biftp.informatik.uni-freiburg.de/pub/HRIBO/examplereport_HRIBO1.3.2_14-02-20.zip

HRIBO Documentation, Release 1.4.4

8 Chapter 1. HRIBO

CHAPTER

TWO

WORKFLOW CONFIGURATION

This workflow allows different customization to be able to handle different types of input data. On this page we explain
the different options that can be set to easily customize the workflow.

2.1 Default workflow

In order to explain what customizations are possible, we will first have a look at the default workflow.

Default:

• Single-end fastq files

• Differential expression analysis: on

• DeepRibo predictions: off

For the default workflow, we expect the .fastq files to be in single-end format. Additionally, we activated differential
expression by default. Differential expression requires multiple conditions and RIBO and RNA samples. A possible
sample.tsv would look as follows:

method condition replicate fastqFile
RIBO A 1 fastq/RIBO-A-1.fastq.gz
RIBO A 2 fastq/RIBO-A-2.fastq.gz
RIBO B 1 fastq/RIBO-B-1.fastq.gz
RIBO B 2 fastq/RIBO-B-2.fastq.gz
RNA A 1 fastq/RNA-A-1.fastq.gz
RNA A 2 fastq/RNA-A-2.fastq.gz
RNA B 1 fastq/RNA-B-1.fastq.gz
RNA B 2 fastq/RNA-B-2.fastq.gz

Note: By default only reparation predictions are used. The reason for this is that DeepRibo is not available on conda
as of now and therfore requires additional tweaks to run it. The process is explained below.

9

HRIBO Documentation, Release 1.4.4

2.2 No differential expression

If you do not have multiple conditions and differential expression is activated, you will receive an error message. To
deactivate differential expression, you have to edit the config.yaml file.

adapter: ""
samples: "HRIBO/samples.tsv"
alternativestartcodons: "GTG,TTG"
Differential expression: on / off
differentialexpression: "off"
Deepribo predictions: on / off
deepribo: "off"

This will allow you the use of a sample.tsv like:

method condition replicate fastqFile
RIBO A 1 fastq/RIBO-A-1.fastq.gz
RIBO A 2 fastq/RIBO-A-2.fastq.gz
RNA A 1 fastq/RNA-A-1.fastq.gz
RNA A 2 fastq/RNA-A-2.fastq.gz

2.3 Activating DeepRibo

Activating DeepRibo predictions will give you a different file with ORF predictions. By experience, the top DeepRibo
results tend to be better than those of reparation. For archea, where reparation performs very poorly, DeepRibo is the
preferred option.

Note: In order to use DeepRibo, the tool singularity is required. Please refer to the overview for details on the
installation.

Once you have installed singularity turn on DeepRibo in the config.yaml:

adapter: ""
samples: "HRIBO/samples.tsv"
alternativestartcodons: "GTG,TTG"
Differential expression: on / off
differentialexpression: "on"
Deepribo predictions: on / off
deepribo: "on"

When calling snakemake, you will now require additional commandline arguments:

• –use-singularity: specify that snakemake can now download and use docker container via singularity.

• –singularity-args ” -c “: specify the --contain option to ensure that only the docker containers file system
will be used.

Warning: DeepRibo cannot cope with genomes containing special IUPAC symbols, ensure that your genome
file contains only A, G, C, T, N symbols.

10 Chapter 2. Workflow configuration

HRIBO Documentation, Release 1.4.4

2.3.1 If you run deepribo locally

When running the workflow with DeepRibo locally it might be advised to additionally use the --greediness 0 option,
if you do not have a lot of cores available locally. This will cause the workflow to submit fewer jobs at the same time.
This especially important for DeepRibo as we observed that a single DeepRibo job can finish in less than an hour if it
does not have to fight for cores with another DeepRibo job. Otherwise, it can run for several hours at a time.

snakemake --use-conda --use-singularity --singularity-args " -c " -s HRIBO/Snakefile --
→˓configfile HRIBO/config.yaml --directory ${PWD} -j 10 --latency-wait 60

2.3.2 If you run deepribo on a cluster system

When running the workflow with DeepRibo on a cluster system. You have to add the above commandline arguments
to your submission script.

#!/bin/bash
#PBS -N <ProjectName>
#PBS -S /bin/bash
#PBS -q "long"
#PBS -d <PATH/ProjectFolder>
#PBS -l nodes=1:ppn=1
#PBS -o <PATH/ProjectFolder>
#PBS -j oe
cd <PATH/ProjectFolder>
source activate HRIBO
snakemake --latency-wait 600 --use-conda --use-singularity --singularity-args " -c " -s␣
→˓HRIBO/Snakefile --configfile HRIBO/config.yaml --directory ${PWD} -j 20 --cluster-
→˓config HRIBO/templates/torque-cluster.yaml --cluster "qsub -N {cluster.jobname} -S /
→˓bin/bash -q {cluster.qname} -d <PATH/ProjectFolder> -l {cluster.resources} -o {cluster.
→˓logoutputdir} -j oe"

Note: If you cannot install singularity on your cluster, check whether there are modules available for you cluster
system.

You can then create an additional submission script that will tell snakemake to activate the module before running jobs.
An example of this would look as follows:

jobscript.sh

#!/bin/bash
module load devel/singularity/3.4.2
properties = {properties}
{exec_job}

Then add the jobscript to the snakemake call:

#!/bin/bash
#PBS -N <ProjectName>
#PBS -S /bin/bash
#PBS -q "long"
#PBS -d <PATH/ProjectFolder>
#PBS -l nodes=1:ppn=1

(continues on next page)

2.3. Activating DeepRibo 11

HRIBO Documentation, Release 1.4.4

(continued from previous page)

#PBS -o <PATH/ProjectFolder>
#PBS -j oe
cd <PATH/ProjectFolder>
source activate HRIBO
snakemake --latency-wait 600 --use-conda --use-singularity --singularity-args " -c " --
→˓jobscript jobscript.sh -s HRIBO/Snakefile --configfile HRIBO/config.yaml --directory $
→˓{PWD} -j 20 --cluster-config HRIBO/templates/torque-cluster.yaml --cluster "qsub -N
→˓{cluster.jobname} -S /bin/bash -q {cluster.qname} -d <PATH/ProjectFolder> -l {cluster.
→˓resources} -o {cluster.logoutputdir} -j oe"

This will specify to snakemake that it will execute module load devel/singularity/3.4.2when submitting each
job.

Warning: This is a specific example for our TORQUE cluster system. The specific way of loading modules, as
well as the available modules, can differ on each system.

2.4 Paired-end support

We allow paired-end data in our workflow. Unfortunately, many of the downstream tools, like the prediction tools,
cannot use paired-end data. Therefore, we use the tool flash2 to convert paired-end data to single-end data.

In order to use paired-end data, simply replace the Snakefilewith the Snakefile_pairedend. This will now require
a special samples_pairedend.tsv, which is also available in the HRIBO templates folder.

method condition replicate fastqFile1 fastqFile2
RIBO A 1 fastq/RIBO-A-1_R1.fastq.gz fastq/RIBO-A-1_R2.fastq.gz
RIBO A 2 fastq/RIBO-A-2_R1.fastq.gz fastq/RIBO-A-2_R2.fastq.gz
RIBO B 1 fastq/RIBO-B-1_R1.fastq.gz fastq/RIBO-B-1_R2.fastq.gz
RIBO B 2 fastq/RIBO-B-2_R1.fastq.gz fastq/RIBO-B-2_R2.fastq.gz
RNA A 1 fastq/RNA-A-1_R1.fastq.gz fastq/RNA-A-1_R2.fastq.gz
RNA A 2 fastq/RNA-A-2_R1.fastq.gz fastq/RNA-A-2_R2.fastq.gz
RNA B 1 fastq/RNA-B-1_R1.fastq.gz fastq/RNA-A-1_R2.fastq.gz
RNA B 2 fastq/RNA-B-2_R1.fastq.gz fastq/RNA-A-1_R2.fastq.gz

12 Chapter 2. Workflow configuration

CHAPTER

THREE

ANALYSIS RESULT FILES

The important files in this workflow are listed and explained below.

3.1 ORF Predictions

The output files containing information about predicted Open Reading Frames, these also contain novel predictions.

3.1.1 predictions_reparation.xlsx

This file contains all reparation ORF predictions.

Column name Description
Identifier Unique identifier describing the entry.
Genome The genome accession identifier.
Source The source of the ORF. (here reparation)
Feature The feature of the ORF (here CDS)
Start The start position of the ORF.
Stop The stop position of the ORF.
Strand The strand of the ORF. (+/-)
Pred_probability The probability of this ORF (0.5-1, 1 being the best value)
Locus_tag If the detected ORF is already in the annotation, this gives its locus tag.
Old_locus_tag The old locus tag of a gene (if available in the annotation)
Name If the detected ORF is already in the annotation, this gives its name.
Length The length of the ORF.
Codon_count The number of codons in the ORF. (length/3)
<method>-<condition>-<replicate>_TE The translational efficiency for the given sample.
<method>-<condition>-
<replicate>_rpkm

The RPKM for the given sample.

Evidence The <condition>-<replicate> sample in which this ORF was predicted.
Start_codon The start codon of the ORF.
Stop_codon The stop codon of the ORF.
15nt_upstream The 15nt upstream of the start codon
Nucleotide_seq The nucleotide sequence of the ORF.
Aminoacid_seq The amino acid sequence of the ORF.

13

HRIBO Documentation, Release 1.4.4

3.1.2 predictions_reparation.gff

An annotation file in .gff3 format containing all predictions of reparation for visualization in a genome browser.

3.1.3 predictions_deepribo.xlsx

Note: These files are only available when activating DeepRibo predictions in the config.yaml. (see workflow-
configuration <workflow-configuration:workflow-configuration>)

This file contains all DeepRibo ORF predictions.

Column name Description
Identifier Unique identifier describing the entry.
Genome The genome accession identifier.
Source The source of the ORF. (here reparation)
Feature The feature of the ORF (here CDS)
Start The start position of the ORF.
Stop The stop position of the ORF.
Strand The strand of the ORF. (+/-)
Pred_value The value DeepRibo attributes the given prediction.
Pred_rank The rank calculated from the prediction value. (the best prediction has

rank 1)
Novel_rank A special ranking involving only novel ORFs that are not in the annota-

tion.
Locus_tag If the detected ORF is already in the annotation, this gives its locus tag.
Old_locus_tag The old locus tag of a gene (if available in the annotation)
Name If the detected ORF is already in the annotation, this gives its name.
Length The length of the ORF.
Codon_count The number of codons in the ORF. (length/3)
<method>-<condition>-
<replicate>_TE

The translational efficiency for the given sample.

<method>-<condition>-
<replicate>_rpkm

The RPKM for the given sample.

Evidence The <condition>-<replicate> sample in which this ORF was predicted.
Start_codon The start codon of the ORF.
Stop_codon The stop codon of the ORF.
15nt_upstream The 15nt upstream of the start codon
Nucleotide_seq The nucleotide sequence of the ORF.
Aminoacid_seq The amino acid sequence of the ORF.

14 Chapter 3. Analysis result files

HRIBO Documentation, Release 1.4.4

3.1.4 predictions_deepribo.gff

Note: These files are only available when activating DeepRibo predictions in the config.yaml. (see workflow-
configuration <workflow-configuration:workflow-configuration>)

An annotation file in .gff3 format containing all predictions of DeepRibo for visualization in a genome browser.

3.2 Quality control

This comprises all files that can help to perform quality control on all input samples.

3.2.1 multiqc_report.html

The multiQC report collects information from different tools, including fastQC and subread featurecounts. The
general statistics give an overview over:

• the number of duplicates

• the GC content

• the average read lengths

• the number of reads (in millions)

These statistics are collected after each processing step of our pipeline.

• raw: the unprocessed data

• trimmed: the data after trimming the adapter sequences

• mapped: the data after mapping with Segemehl

• unique: the data after removing multi-mapping reads

• norRNA: the data after filtering out the rRNA

Further, feature counts are provided for different features from the annotation file. (i.e. how many reads map to each
feature) This includes, all(featurecount), rRNA, norRNA(after filtering), tRNA and ncRNA. Following is a fastQC
report including sequence counts, sequence quality histograms, per sequence quality scores, per base sequence content,
per sequence GC content, per base N content, sequence length distribution, sequence duplication levels, overrepresented
features, adapter content and a status overview.

3.2.2 heatmap_SpearmanCorr_readCounts.pdf

Spearman correlation coefficients of read counts. The dendrogram indicates which samples read counts are most
similar to each other. Since there should be always a higher correlation between experiments with the same condition
and experiment type (e.g. replicates) and not others, this is a rapid way to quality-control the labeling/consistency of
input data.

3.2. Quality control 15

HRIBO Documentation, Release 1.4.4

3.2.3 annotation_total.xlsx

This file contains detailed measures for every feature in the input annotation using read counts including multi-mapping
reads.

Column name Description
Identifier Unique identifier describing the entry.
Genome The genome accession identifier.
Source The source of the annotated feature.
Feature The feature of the annotated feature.
Start The start position of the annotated feature.
Stop The stop position of the annotated feature.
Strand The strand of the annotated feature. (+/-)
Locus_tag The locus tag of the annotated feature. (if available)
Old_locus_tag The old locus tag of a gene (if available in the annotation)
Name The name of the annotated feature. (if available)
Length The length of the annotated feature.
Codon_count The number of codons in the annotated feature. (length / 3)
<method>-<condition>-<replicate>_TE The translational efficiency for the given sample.
<method>-<condition>-<replicate>_rpkm The RPKM for the given sample. (ReadsPerKilobaseMillion)
Start_codon The start codon of the annotated feature.
Stop_codon The stop codon of the annotated feature.
15nt_upstream The 15nt upstream of the start codon
Nucleotide_seq The nucleotide sequence of the annotated feature.
Aminoacid_seq The amino acid sequence of the annotated feature.
Product The product of the annotated feature. (if available)
Note The note of the annotated feature. (if available)

3.2.4 total_read_counts.xlsx

This file shows the overall read-counts for each feature annotated in the user-provided annotation, after mapping and
before removal of multi-mapping reads.

3.2.5 annotation_unique.xlsx

This file contains detailed measures for every feature in the input annotation using read counts after removal of multi-
mapping reads.

16 Chapter 3. Analysis result files

HRIBO Documentation, Release 1.4.4

Column name Description
Identifier Unique identifier describing the entry.
Genome The genome accession identifier.
Source The source of the annotated feature.
Feature The feature of the annotated feature.
Start The start position of the annotated feature.
Stop The stop position of the annotated feature.
Strand The strand of the annotated feature. (+/-)
Locus_tag The locus tag of the annotated feature. (if available)
Old_locus_tag The old locus tag of a gene (if available in the annotation)
Name The name of the annotated feature. (if available)
Length The length of the annotated feature.
Codon_count The number of codons in the annotated feature. (length / 3)
<method>-<condition>-<replicate>_TE The translational efficiency for the given sample.
<method>-<condition>-<replicate>_rpkm The RPKM for the given sample. (ReadsPerKilobaseMillion)
Start_codon The start codon of the annotated feature.
Stop_codon The stop codon of the annotated feature.
15nt_upstream The 15nt upstream of the start codon
Nucleotide_seq The nucleotide sequence of the annotated feature.
Aminoacid_seq The amino acid sequence of the annotated feature.
Product The product of the annotated feature. (if available)
Note The note of the annotated feature. (if available)

3.2.6 unique_read_counts.xlsx

This file shows the overall read-counts for each feature annotated in the user-provided annotation, after mapping and
after removal of multi-mapping reads.

3.3 genome-browser

The files that can be used for visualization in a genome browser.

3.3.1 updated_annotation.gff

A gff track containing both the original annotation together with the new predictions by reparation.

3.3.2 potentialStartCodons.gff

A genome browser track with all possible start codons.

3.3. genome-browser 17

HRIBO Documentation, Release 1.4.4

3.3.3 potentialStopCodons.gff

A genome browser track with all possible stop codons.

3.3.4 potentialRibosomeBindingSite.gff

A genome browser track with possible ribosome binding sites.

3.3.5 potentialAlternativeStartCodons.gff

A genome browser track with alternative start codons.

3.3.6 BigWig coverage files

We offer many different single nucleotide mapping bigwig files for genome browser visualization. These files are
available for different regions and performed with different methods.

• global: full read is mapped

• centered: region around the center.

• threeprime: region around the three prime end.

• fiveprime: region around the five prime end.

These are all available with the following normalization methods:

• raw: raw, unprocessed files. This should only be used to check the coverage of a single file. It should not be
used to compare to other files.

• min: normalized by number of minimal total reads per sample (factor = min. number of reads / number of reads).
This is the recommended normalization when comparing different samples from the same experiment.

• mil: normalized by 1000000 (factor = 1000000 / number of reads). This is the recommended normalization
when comparing different samples from the different experiments.

3.4 Differential Expression

Files related to the differential expression analysis.

3.4.1 riborex/<contrast>_sorted.xlsx

Table containing all differential expression results from riborex.

18 Chapter 3. Analysis result files

HRIBO Documentation, Release 1.4.4

3.4.2 riborex/<contrast>_significant.xlsx

Table containing significant differential expression results from riborex (pvalue < 0.05).

3.4.3 xtail/<contrast>_sorted.xlsx

Table containing all differential expression results from xtail.

3.4.4 xtail/<contrast>_significant.xlsx

Table containing significant differential expression results from xtail (pvalue < 0.05).

3.4.5 xtail/r_<contrast>.pdf

This figure shows the RPF-to-mRNA ratios in two conditions, where the position of each gene is determined by its
RPF-to-mRNA ratio (log2R) in two conditions, represented on the x-axis and y-axis respectively. The points will be
color-coded with the pvalue final obtained with xtail (more significant p values having darker color)

• blue: for genes with log2R larger in first condition than second condition.

• red: for genes with log2R larger in second condition than the first condition.

• green: for genes with log2R changing homodirectionally in two condition.

• yellow: for genes with log2R changing antidirectionally in two condition.

3.4.6 xtail/fc_<contrast>.pdf

This figure shows the result of the differential expression at the two expression levels, where each gene is a dot whose
position is determined by its log2 fold change (log2FC) of transcriptional level (mRNA log2FC), represented on the
x-axis, and the log2FC of translational level (RPF log2FC), represented on the y-axis. The points will be color-coded
with the pvalue final obtained with xtail (more significant p values having darker color)

• blue: for genes whos mRNA log2FC larger than 1 (transcriptional level).

• red: for genes whos RPF log2FC larger than 1 (translational level).

• green: for genes changing homodirectionally at both level.

• yellow: for genes changing antidirectionally at two levels.

3.5 Metagene Analysis

Meta gene profiling analyses the distribution of mapped reads around the start codon. Moreover for Ribo-seq it is
expected that the ribosome protects a specific range of read lengths, often typical for the investigated group of organisms,
from digestion by nuclease. These reads should show a typical peak around the start codon which corresponds to the
high frequency that ribosomes are bound there. We output and plot the meta gene profiling for each individual fragment
length as a quality control for the Ribo-seq protocol. If the distribution for all read lengths is untypical, arresting the
ribosomes failed.

3.5. Metagene Analysis 19

HRIBO Documentation, Release 1.4.4

3.5.1 <accession>_Z.Y_profiling.xlsx/tsv

The table shows for a range of specific read lengths, how many reads on average over all start codons in the genome
have been mapped per nucleotide. The nucleotides range from 100 nucleotides upstream of the start codon to 399
nucleotides downstream. The read counts are either raw or normalized by average read count per nucleotide, for the
range around the start codon. Moreover different single nucleotide mapping variants are considered, where only the 5’,
3’ or centered region of the read is counted.

3.5.2 <accession>_Z.Y_profiling.pdf

3.6 Additional output

3.6.1 samples.xlsx

An excel representation of the input sample file.

3.6.2 manual.pdf

A PDF format file giving some explanations about the output files, contained in the final result report.

3.6.3 overview.xlsx

An overview table containing all information gathered from the prediction tools and differential expression analysis.
The contents of this table change depending on which options are set. The overview table for the default workflow will
contain annotation. reparation, deepribo and differential expression output.

Column name Description
Identifier Unique identifier describing the entry.
Genome The genome accession identifier.
Start The start position of the ORF.
Stop The stop position of the ORF.
Strand The strand of the ORF. (+/-)
Locus_tag The locus tag of ORF. (if not novel)
Overlapping_genes Genes that overlap with the predicted ORF
Old_locus_tag The old locus tag of a gene (if available in the annotation)
Name The name of the ORF. (if not novel)
Gene_name The name of the ORFs associated gene feature. (if not novel)
Length The length of the ORF.
Codon_count The number of codons in the ORF. (length / 3)
Start_codon The start codon of the annotated feature.
Stop_codon The stop codon of the annotated feature.
15nt_upstream The 15nt upstream of the start codon
Nucleotide_seq The nucleotide sequence of the annotated feature.
Aminoacid_seq The amino acid sequence of the annotated feature.
<method>-<condition>-<replicate>_TE The translational efficiency for the given sample.
<method>-<condition>-<replicate>_rpkm The RPKM for the given sample. (ReadsPerKilobaseMillion)
Evidence_reparation The sample this ORF was predicted in (for reparation)
Reparation_probability The probability of this ORF (0.5-1, 1 being the best value)

continues on next page

20 Chapter 3. Analysis result files

HRIBO Documentation, Release 1.4.4

Table 1 – continued from previous page
Column name Description
Evidence_deepribo The sample this ORF was predicted in (for deepribo)
Deepribo_rank The deepribo rank for this ORF. (1 being the best value, 999999 undefined)
Deepribo_score The score the deepribo rank is based on.
riborex_pvalue The pvalue (determined by riborex)
riborex_pvalue_adjusted The adjusted pvalue (determined by riborex)
riborex_log2FC The log2FC (determined by riborex)
xtail_pvalue The pvalue (determined by xtail)
xtail_pvalue_adjusted The adjusted pvalue (determined by xtail)
xtail_log2FC The log2FC (determined by xtail)

3.6. Additional output 21

HRIBO Documentation, Release 1.4.4

22 Chapter 3. Analysis result files

CHAPTER

FOUR

EXAMPLE WORKFLOW

The retrieval of input files and running the workflow locally and on a server cluster via a queuing system is demonstrated
using an example with data available from NCBI. This dataset is available under the accession number PRJNA379630.

Note: In this tutorial, we will show the basic functionalities of our workflow, for information about additional options
please refer to: workflow-configuration.

Note: Ensure that you have miniconda3 installed and a snakemake environment set-up. Please refer to the
overview for details on the installation.

4.1 Setup

First of all, we start by creating the project directory and changing to it.

mkdir project
cd project

We then download the latest version of HRIBO into the newly created project folder and unpack it.

wget https://github.com/RickGelhausen/HRIBO/archive/1.5.1.tar.gz
tar -xzf 1.5.1.tar.gz; mv HRIBO-1.5.1 HRIBO; rm 1.5.1.tar.gz;

4.2 Retrieve and prepare input files

Before starting the workflow, we have to acquire and prepare several input files. These files are the annotation file, the
genome file, the fastq files, the configuration file and the sample sheet.

23

https://www.ncbi.nlm.nih.gov/

HRIBO Documentation, Release 1.4.4

4.2.1 Annotation and genome files

First, we want to retrieve the annotation file and the genome file. In this case, we can find both on NCBI using the
accession number NC_002516.2.

On this page, we can directly retrieve both files by clicking on the according download links next to the file descriptions.
Alternatively, you can directly download them using the following commands:

wget ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCF/000/006/765/GCF_000006765.1_ASM676v1/GCF_
→˓000006765.1_ASM676v1_genomic.gff.gz
wget ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCF/000/006/765/GCF_000006765.1_ASM676v1/GCF_
→˓000006765.1_ASM676v1_genomic.fna.gz

Then, we unpack and rename both files.

gunzip GCF_000006765.1_ASM676v1_genomic.gff.gz && mv GCF_000006765.1_ASM676v1_genomic.
→˓gff annotation.gff
gunzip GCF_000006765.1_ASM676v1_genomic.fna.gz && mv GCF_000006765.1_ASM676v1_genomic.
→˓fna genome.fa

4.2.2 .fastq files

Next, we want to acquire the fastq files. The fastq files are available under the accession number PRJNA379630 on
NCBI. The files have to be downloaded using the Sequence Read Archive (SRA). There are multiple ways of down-
loading files from SRA as explained here.

As we already have conda installed, the easiest way is to install the sra-tools:

conda create -n sra-tools -c bioconda -c conda-forge sra-tools pigz

This will create a conda environment containing the sra-tools. Using these, we can simply pass the SRA identifiers and
download the data:

24 Chapter 4. Example workflow

https://www.ncbi.nlm.nih.gov/genome/187?genome_assembly_id=299953
https://www.ncbi.nlm.nih.gov/bioproject/PRJNA379630
https://www.ncbi.nlm.nih.gov/sra/docs/
https://www.ncbi.nlm.nih.gov/sra/docs/sradownload/

HRIBO Documentation, Release 1.4.4

conda activate sra-tools;
fasterq-dump SRR5356907; pigz -p 2 SRR5356907.fastq; mv SRR5356907.fastq.gz RIBO-PAO1-
→˓gly-1.fastq.gz;
fasterq-dump SRR5356908; pigz -p 2 SRR5356908.fastq; mv SRR5356908.fastq.gz RNA-PAO1-gly-
→˓1.fastq.gz;
conda deactivate;

Note: Due to the runtime of several tools, especially the mapping by segemehl, this tutorial only uses one condition
and replicate. If available, it is advisable to use as many replicates as possible.

Warning: If you have a bad internet connection, this step might take some time. If you prefer, you can also use
your own .fastq files. But ensure that you use the correct annotation and genome files and that you compress
them in .gz format (using gzip, pigz, etc . . .)

This will download compressed files for each of the required .fastq files. We will move them into a folder called
fastq.

mkdir fastq;
mv *.fastq.gz fastq;

4.2.3 Sample sheet and configuration file

Finally, we will prepare the configuration file (config.yaml) and the sample sheet (samples.tsv). We start by
copying templates for both files from the HRIBO/templates/ into the HRIBO/ folder.

cp HRIBO/templates/samples.tsv HRIBO/

The sample file looks as follows:

method condition replicate fastqFile
RIBO A 1 fastq/RIBO-A-1.fastq.gz
RIBO A 2 fastq/RIBO-A-2.fastq.gz
RIBO B 1 fastq/RIBO-B-1.fastq.gz
RIBO B 2 fastq/RIBO-B-2.fastq.gz
RNA A 1 fastq/RNA-A-1.fastq.gz
RNA A 2 fastq/RNA-A-2.fastq.gz
RNA B 1 fastq/RNA-B-1.fastq.gz
RNA B 2 fastq/RNA-B-2.fastq.gz

Note: When using your own data, use any editor (vi(m), gedit, nano, atom, . . .) to customize the sample sheet.

Warning: Please ensure not to replace any tabulator symbols with spaces while changing this file.

We will rewrite this file to fit the previously downloaded .fastq.gz files.

4.2. Retrieve and prepare input files 25

HRIBO Documentation, Release 1.4.4

method condition replicate fastqFile
RIBO GLY 1 fastq/RIBO-PAO1-gly-1.fastq.gz
RNA GLY 1 fastq/RNA-PAO1-gly-1.fastq.gz

Next, we are going to set up the config.yaml.

cp HRIBO/templates/config.yaml HRIBO/

This file contains the following variables:

• adapter: Specify the adapter sequence to be used. In our case this would be AGATCGGAAGAGCACACGTCT-
GAACTCCAGTCAC

• samples: The location of the sample sheet created in the previous step.

• alternativestartcodons: Specify a comma separated list of alternative start codons.

• differentialexpression: Specify whether you want to activate differential expresssion analysis. (“yes/no”)

• deepribo: Specify whether you want to activate deepribo ORF prediction. (“yes/no”)

In our example, this will lead to the following config.yaml file:

adapter: "AGATCGGAAGAGCACACGTCTGAACTCCAGTCAC"
samples: "HRIBO/samples.tsv"
alternativestartcodons: "GTG,TTG"
Differential expression: on / off
differentialexpression: "off"
Deepribo predictions: on / off
deepribo: "off"

4.3 Running the workflow

Now that all the required files are prepared, we can start running the workflow, either locally or in a cluster environment.

Warning: before you start using snakemake remember to activate the environment first.

conda activate snakemake

4.3.1 Run the workflow locally

Use the following steps when you plan to execute the workflow on a single server, cloud instance or workstation.

Warning: Please be aware that some steps of the workflow require a lot of memory or time, depending on the
size of your input data. To get a better idea about the memory consumption, you can have a look at the provided
sge.yaml or torque.yaml files.

Navigate to the project folder containing your annotation and genome files, as well as the HRIBO folder. Start the
workflow locally from this folder by running:

26 Chapter 4. Example workflow

HRIBO Documentation, Release 1.4.4

snakemake --use-conda -s HRIBO/Snakefile --configfile HRIBO/config.yaml --directory $
→˓{PWD} -j 10 --latency-wait 60

This will start the workflow locally.

• --use-conda: instruct snakemake to download tool dependencies from conda.

• -s: specifies the Snakefile to be used.

• --configfile: specifies the config file to be used.

• --directory: specifies your current path.

• -j: specifies the maximum number of cores snakemake is allowed to use.

• --latency-wait: specifies how long (in seconds) snakemake will wait for filesystem latencies until declaring
a file to be missing.

4.3.2 Run Snakemake in a cluster environment

Use the following steps if you are executing the workflow via a queuing system. Edit the configuration file <cluster>.
yaml according to your queuing system setup and cluster hardware.

Navigate to the project folder on your cluster system. Start the workflow from this folder by running (The following
system call shows the usage with Grid Engine.):

snakemake --use-conda -s HRIBO/Snakefile --configfile HRIBO/config.yaml --directory $
→˓{PWD} -j 20 --cluster-config HRIBO/sge.yaml

Note: Ensure that you use an appropriate <cluster>.yaml for your cluster system. We provide one for SGE and
TORQUE based systems.

4.3.3 Example: Run Snakemake in a cluster environment

Warning: Be advised that this is a specific example, the required options may change depending on your
system.

We ran the tutorial workflow in a cluster environment, specifically a TORQUE cluster environment. Therefore, we
created a bash script torque.sh in our project folder.

vi torque.sh

Note: Please note that all arguments enclosed in <> have to be customized. This script will only work if your cluster
uses the TORQUE queuing system.

We proceeded by writing the queuing script:

#!/bin/bash
#PBS -N <ProjectName>
#PBS -S /bin/bash

(continues on next page)

4.3. Running the workflow 27

HRIBO Documentation, Release 1.4.4

(continued from previous page)

#PBS -q "long"
#PBS -d <PATH/ProjectFolder>
#PBS -l nodes=1:ppn=1
#PBS -o <PATH/ProjectFolder>
#PBS -j oe
cd <PATH/ProjectFolder>
source activate HRIBO
snakemake --latency-wait 600 --use-conda -s HRIBO/Snakefile --configfile HRIBO/config.
→˓yaml --directory ${PWD} -j 20 --cluster-config HRIBO/torque.yaml --cluster "qsub -N
→˓{cluster.jobname} -S /bin/bash -q {cluster.qname} -d <PATH/ProjectFolder> -l {cluster.
→˓resources} -o {cluster.logoutputdir} -j oe"

We then simply submitted this job to the cluster:

qsub torque.sh

Using any of the presented methods, this will run the workflow on the tutorial dataset and create the desired output
files.

4.4 Results

The last step will be to aggregate all the results once the workflow has finished running. In order to do this, we provided
a script in the scripts folder of HRIBO called makereport.sh.

bash HRIBO/scripts/makereport.sh <reportname>

Running this will create a folder where all the results are collected from the workflows final output, it will additionally
create compressed file in .zip format.

Note: A detailed explanation of the result files can be found in the result section.

Note: The final result of this example workflow, can be found here .

Warning: As many browsers stopped the support for viewing ftp files, you might have to use a ftp viewer instead.

4.5 Runtime

The total runtime of the example workflow, using 12 cores of an AMD EPYC Processor (with IBPB), 1996 MHz CPUs
and 64 GB RAM, was 4h04m37s.

The runtime contains the automatic download and installation time of all dependencies by conda and singularity. This
step is mainly dependent on the available network bandwidth. In our case it took about 7 minutes.

28 Chapter 4. Example workflow

ftp://biftp.informatik.uni-freiburg.de/pub/HRIBO/example_report_HRIBO1.5.1_28-07-21.zip

HRIBO Documentation, Release 1.4.4

4.6 References

4.6. References 29

HRIBO Documentation, Release 1.4.4

30 Chapter 4. Example workflow

CHAPTER

FIVE

EXTENDED WORKFLOW

Warning: This tutorial shows a full run of the workflow with all options activated. For testing, we ran this example
on a TORQUE cluster system and locally on a large cloud instance. The data is likely too large for running locally
on an average laptop.

We show a run of the full workflow, including deepribo predictions and differential expression analysis, on data avail-
able from NCBI. For this purpose, we use a salmonella enterica dataset available under the accession number
PRJNA421559 [PGAR19].

Warning: Ensure that you have miniconda3 and singularity installed and a snakemake environment set-
up. Please refer to the overview for details on the installation.

5.1 Setup

First of all, we start by creating the project directory and changing to it. (you can choose any directory name)

mkdir project
cd project

We then download the latest version of HRIBO into the newly created project folder and unpack it.

wget https://github.com/RickGelhausen/HRIBO/archive/1.5.1.tar.gz
tar -xzf 1.5.1.tar.gz; mv HRIBO-1.5.1 HRIBO; rm 1.5.1.tar.gz;

5.2 Retrieve and prepare input files

Before starting the workflow, we have to acquire and prepare several input files. These files are the annotation file, the
genome file, the fastq files, the configuration file and the sample sheet.

31

https://www.ncbi.nlm.nih.gov/

HRIBO Documentation, Release 1.4.4

5.2.1 Annotation and genome files

First, we want to retrieve the annotation file and the genome file. In this case, we can find both on NCBI using the
accession number NC_016856.1.

Note: Ensure that you download the annotation for the correct strain str. 14028S.

On this page, we can directly retrieve both files by clicking on the according download links next to the file descriptions.
Alternatively, you can directly download them using the following commands:

wget ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCF/000/022/165/GCF_000022165.1_ASM2216v1/
→˓GCF_000022165.1_ASM2216v1_genomic.gff.gz
wget ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCF/000/022/165/GCF_000022165.1_ASM2216v1/
→˓GCF_000022165.1_ASM2216v1_genomic.fna.gz

Then, we unpack and rename both files.

gunzip GCF_000022165.1_ASM2216v1_genomic.gff.gz && mv GCF_000022165.1_ASM2216v1_genomic.
→˓gff annotation.gff
gunzip GCF_000022165.1_ASM2216v1_genomic.fna.gz && mv GCF_000022165.1_ASM2216v1_genomic.
→˓fna genome.fa

5.2.2 .fastq files

Next, we want to acquire the fastq files. The fastq files are available under the accession number PRJNA421559 on
NCBI. The files have to be downloaded using the Sequence Read Archive (SRA). There are multiple ways of down-
loading files from SRA as explained here.

As we already have conda installed, the easiest way is to install the sra-tools:

conda create -n sra-tools -c bioconda -c conda-forge sra-tools pigz

This will create a conda environment containing the sra-tools and pigz. Using these, we can simply pass the SRA
identifiers and download the data:

conda activate sra-tools;
fasterq-dump SRR6359966; pigz -p 2 SRR6359966.fastq; mv SRR6359966.fastq.gz RIBO-WT-1.
→˓fastq.gz
fasterq-dump SRR6359967; pigz -p 2 SRR6359967.fastq; mv SRR6359967.fastq.gz RIBO-WT-2.
→˓fastq.gz
fasterq-dump SRR6359974; pigz -p 2 SRR6359974.fastq; mv SRR6359974.fastq.gz RNA-WT-1.
→˓fastq.gz
fasterq-dump SRR6359975; pigz -p 2 SRR6359975.fastq; mv SRR6359975.fastq.gz RNA-WT-2.
→˓fastq.gz
fasterq-dump SRR6359970; pigz -p 2 SRR6359970.fastq; mv SRR6359970.fastq.gz RIBO-csrA-1.
→˓fastq.gz (continues on next page)

32 Chapter 5. Extended workflow

https://www.ncbi.nlm.nih.gov/genome/152?genome_assembly_id=154366
https://www.ncbi.nlm.nih.gov/bioproject/PRJNA421559
https://www.ncbi.nlm.nih.gov/sra/docs/
https://www.ncbi.nlm.nih.gov/sra/docs/sradownload/

HRIBO Documentation, Release 1.4.4

(continued from previous page)

fasterq-dump SRR6359971; pigz -p 2 SRR6359971.fastq; mv SRR6359971.fastq.gz RIBO-csrA-2.
→˓fastq.gz
fasterq-dump SRR6359978; pigz -p 2 SRR6359978.fastq; mv SRR6359978.fastq.gz RNA-csrA-1.
→˓fastq.gz
fasterq-dump SRR6359979; pigz -p 2 SRR6359979.fastq; mv SRR6359979.fastq.gz RNA-csrA-2.
→˓fastq.gz
conda deactivate;

Note: we will use two conditions and two replicates for each condition. There are 4 replicates available for each
condition, we run it with two as this is just an example. If you run an analysis always try to use as many replicates as
possible.

Warning: If you have a bad internet connection, this step might take some time. It is advised to run this workflow
on a cluster or cloud instance.

This will download compressed files for each of the required .fastq files. We will move them into a folder called
fastq.

mkdir fastq;
mv *.fastq.gz fastq;

5.2.3 Sample sheet and configuration file

Finally, we will prepare the configuration file (config.yaml) and the sample sheet (samples.tsv). We start by
copying templates for both files from the HRIBO/templates/ into the HRIBO/ folder.

cp HRIBO/templates/samples.tsv HRIBO/

The sample file looks as follows:

method condition replicate fastqFile
RIBO A 1 fastq/RIBO-A-1.fastq.gz
RIBO A 2 fastq/RIBO-A-2.fastq.gz
RIBO B 1 fastq/RIBO-B-1.fastq.gz
RIBO B 2 fastq/RIBO-B-2.fastq.gz
RNA A 1 fastq/RNA-A-1.fastq.gz
RNA A 2 fastq/RNA-A-2.fastq.gz
RNA B 1 fastq/RNA-B-1.fastq.gz
RNA B 2 fastq/RNA-B-2.fastq.gz

Note: When using your own data, use any editor (vi(m), gedit, nano, atom, . . .) to customize the sample sheet.

Warning: Please ensure not to replace any tabulator symbols with spaces while changing this file.

We will rewrite this file to fit the previously downloaded .fastq.gz files.

5.2. Retrieve and prepare input files 33

HRIBO Documentation, Release 1.4.4

method condition replicate fastqFile
RIBO WT 1 fastq/RIBO-WT-1.fastq.gz
RIBO WT 2 fastq/RIBO-WT-2.fastq.gz
RIBO csrA 1 fastq/RIBO-csrA-1.fastq.gz
RIBO csrA 2 fastq/RIBO-csrA-2.fastq.gz
RNA WT 1 fastq/RNA-WT-1.fastq.gz
RNA WT 2 fastq/RNA-WT-2.fastq.gz
RNA csrA 1 fastq/RNA-csrA-1.fastq.gz
RNA csrA 2 fastq/RNA-csrA-1.fastq.gz

Next, we are going to set up the config.yaml.

cp HRIBO/templates/config.yaml HRIBO/

This file contains the following variables:

• adapter: Specify the adapter sequence to be used. In our case this would be CTGTAGGCACCATCAAT

• samples: The location of the sample sheet created in the previous step.

• alternativestartcodons: Specify a comma separated list of alternative start codons.

• differentialexpression: Specify whether you want to activate differential expresssion analysis. (“yes/no”)

• deepribo: Specify whether you want to activate deepribo ORF prediction. (“yes/no”)

In our example, this will lead to the following config.yaml file:

adapter: "CTGTAGGCACCATCAAT"
samples: "HRIBO/samples.tsv"
alternativestartcodons: "GTG,TTG"
Differential expression: on / off
differentialexpression: "on"
Deepribo predictions: on / off
deepribo: "on"

5.3 Running the workflow

Now that all the required files are prepared, we can start running the workflow, either locally or in a cluster environment.

Warning: if you have problems running deepribo, please refer to Activating DeepRibo.

Warning: before you start using snakemake remember to activate the environment first.

conda activate snakemake

34 Chapter 5. Extended workflow

HRIBO Documentation, Release 1.4.4

5.3.1 Run the workflow locally

Use the following steps when you plan to execute the workflow on a single server, cloud instance or workstation.

Warning: Please be aware that some steps of the workflow require a lot of memory or time, depending on the
size of your input data. To get a better idea about the memory consumption, you can have a look at the provided
sge.yaml or torque.yaml files.

Navigate to the project folder containing your annotation and genome files, as well as the HRIBO folder. Start the
workflow locally from this folder by running:

snakemake --use-conda --use-singularity --singularity-args " -c " --greediness 0 -s␣
→˓HRIBO/Snakefile --configfile HRIBO/config.yaml --directory ${PWD} -j 10 --latency-wait␣
→˓60

This will start the workflow locally.

• --use-conda: instruct snakemake to download tool dependencies from conda.

• -s: specifies the Snakefile to be used.

• --configfile: specifies the config file to be used.

• --directory: specifies your current path.

• -j: specifies the maximum number of cores snakemake is allowed to use.

• --latency-wait: specifies how long (in seconds) snakemake will wait for filesystem latencies until declaring
a file to be missing.

5.3.2 Run Snakemake in a cluster environment

Use the following steps if you are executing the workflow via a queuing system. Edit the configuration file <cluster>.
yaml according to your queuing system setup and cluster hardware.

Navigate to the project folder on your cluster system. Start the workflow from this folder by running (The following
system call shows the usage with Grid Engine):

snakemake --use-conda --use-singularity --singularity-args " -c " -s HRIBO/Snakefile --
→˓configfile HRIBO/config.yaml --directory ${PWD} -j 20 --cluster-config HRIBO/sge.yaml

Note: Ensure that you use an appropriate <cluster>.yaml for your cluster system. We provide one for SGE and
TORQUE based systems.

5.3. Running the workflow 35

HRIBO Documentation, Release 1.4.4

5.3.3 Example: Run Snakemake in a cluster environment

Warning: Be advised that this is a specific example, the required options may change depending on your
system.

We ran the tutorial workflow in a cluster environment, specifically a TORQUE cluster environment. Therefore, we
created a bash script torque.sh in our project folder.

vi torque.sh

Note: Please note that all arguments enclosed in <> have to be customized. This script will only work if your cluster
uses the TORQUE queuing system.

We proceeded by writing the queuing script:

#!/bin/bash
#PBS -N <ProjectName>
#PBS -S /bin/bash
#PBS -q "long"
#PBS -d <PATH/ProjectFolder>
#PBS -l nodes=1:ppn=1
#PBS -o <PATH/ProjectFolder>
#PBS -j oe
cd <PATH/ProjectFolder>
source activate HRIBO
snakemake --latency-wait 600 --use-conda --use-singularity --singularity-args " -c " -s␣
→˓HRIBO/Snakefile --configfile HRIBO/config.yaml --directory ${PWD} -j 20 --cluster-
→˓config HRIBO/torque.yaml --cluster "qsub -N {cluster.jobname} -S /bin/bash -q {cluster.
→˓qname} -d <PATH/ProjectFolder> -l {cluster.resources} -o {cluster.logoutputdir} -j oe"

We then simply submitted this job to the cluster:

qsub torque.sh

Using any of the presented methods, this will run the workflow on the tutorial dataset and create the desired output
files.

5.4 Results

The last step will be to aggregate all the results once the workflow has finished running. In order to do this, we provided
a script in the scripts folder of HRIBO called makereport.sh.

bash HRIBO/scripts/makereport.sh <reportname>

Running this will create a folder where all the results are collected from the workflows final output, it will additionally
create compressed file in .zip format. The <reportname> will be extended by report_HRIBOX.X.X_dd-mm-yy.

Note: A detailed explanation of the result files can be found in the result section.

36 Chapter 5. Extended workflow

HRIBO Documentation, Release 1.4.4

Note: The final result of this example workflow, can be found here .

Warning: As many browsers stopped the support for viewing ftp files, you might have to use a ftp viewer instead.

5.5 Runtime

The total runtime of the extended workflow, using 12 cores of an AMD EPYC Processor (with IBPB), 1996 MHz CPUs
and 64 GB RAM, was 5h51m14s.

The runtime contains the automatic download and installation time of all dependencies by conda and singularity. This
step is mainly dependent on the available network bandwidth. In this case it took about 12 minutes.

The runtime difference compared to the example workflow is explained by the additional libraries and tools used.

5.6 References

5.5. Runtime 37

ftp://biftp.informatik.uni-freiburg.de/pub/HRIBO/extended_report_HRIBO1.5.1_28-07-21.zip

HRIBO Documentation, Release 1.4.4

38 Chapter 5. Extended workflow

CHAPTER

SIX

FREQUENTLY ASKED QUESTIONS

6.1 Q: When using singularity I get ERROR : Failed to set effective
UID to 0.

Prior to the installation of singularity change with_suid=1 to with_suid=0 in the mconfig file in the singularity
folder. This should not be necessary for newer versions of singularity.

39

HRIBO Documentation, Release 1.4.4

40 Chapter 6. Frequently asked questions

BIBLIOGRAPHY

[GruningDSjodin+17] Björn Grüning, Ryan Dale, Andreas Sjödin, Jillian Rowe, Brad A. Chapman, Christopher H.
Tomkins-Tinch, Renan Valieris, and Johannes Köster. Bioconda: a sustainable and comprehensive
software distribution for the life sciences. bioRxiv, 2017. URL: https://www.biorxiv.org/content/
early/2017/10/27/207092, arXiv:https://www.biorxiv.org/content/early/2017/10/27/207092.full.pdf,
doi:10.1101/207092.

[KosterR18] Johannes Köster and Sven Rahmann. Snakemake—a scalable bioinformatics workflow en-
gine. Bioinformatics, ():bty350, 2018. URL: http://dx.doi.org/10.1093/bioinformatics/bty350,
arXiv:/oup/backfile/content_public/journal/bioinformatics/pap/10.1093_bioinformatics_bty350/2/bty350.pdf,
doi:10.1093/bioinformatics/bty350.

[PGAR19] Anastasia H. Potts, Yinping Guo, Brian M. M. Ahmer, and Tony Romeo. Role of csra in
stress responses and metabolism important for salmonella virulence revealed by integrated tran-
scriptomics. PLOS ONE, 14(1):1–30, 01 2019. URL: https://doi.org/10.1371/journal.pone.0211430,
doi:10.1371/journal.pone.0211430.

[ZAA+18] Daniel R Zerbino, Premanand Achuthan, Wasiu Akanni, M Ridwan Amode, Daniel Barrell, Jyothish
Bhai, Konstantinos Billis, Carla Cummins, Astrid Gall, Carlos García Girón, Laurent Gil, Leo Gordon,
Leanne Haggerty, Erin Haskell, Thibaut Hourlier, Osagie G Izuogu, Sophie H Janacek, Thomas
Juettemann, Jimmy Kiang To, Matthew R Laird, Ilias Lavidas, Zhicheng Liu, Jane E Loveland, Thomas
Maurel, William McLaren, Benjamin Moore, Jonathan Mudge, Daniel N Murphy, Victoria Newman,
Michael Nuhn, Denye Ogeh, Chuang Kee Ong, Anne Parker, Mateus Patricio, Harpreet Singh Riat,
Helen Schuilenburg, Dan Sheppard, Helen Sparrow, Kieron Taylor, Anja Thormann, Alessandro
Vullo, Brandon Walts, Amonida Zadissa, Adam Frankish, Sarah E Hunt, Myrto Kostadima, Nicholas
Langridge, Fergal J Martin, Matthieu Muffato, Emily Perry, Magali Ruffier, Dan M Staines, Stephen J
Trevanion, Bronwen L Aken, Fiona Cunningham, Andrew Yates, and Paul Flicek. Ensembl 2018.
Nucleic Acids Research, 46(D1):D754–D761, 2018. URL: http://dx.doi.org/10.1093/nar/gkx1098,
arXiv:/oup/backfile/content_public/journal/nar/46/d1/10.1093_nar_gkx1098/2/gkx1098.pdf,
doi:10.1093/nar/gkx1098.

[GruningDSjodin+17] Björn Grüning, Ryan Dale, Andreas Sjödin, Jillian Rowe, Brad A. Chapman, Christopher H.
Tomkins-Tinch, Renan Valieris, and Johannes Köster. Bioconda: a sustainable and comprehensive
software distribution for the life sciences. bioRxiv, 2017. URL: https://www.biorxiv.org/content/
early/2017/10/27/207092, arXiv:https://www.biorxiv.org/content/early/2017/10/27/207092.full.pdf,
doi:10.1101/207092.

[KosterR18] Johannes Köster and Sven Rahmann. Snakemake—a scalable bioinformatics workflow en-
gine. Bioinformatics, ():bty350, 2018. URL: http://dx.doi.org/10.1093/bioinformatics/bty350,
arXiv:/oup/backfile/content_public/journal/bioinformatics/pap/10.1093_bioinformatics_bty350/2/bty350.pdf,
doi:10.1093/bioinformatics/bty350.

[PGAR19] Anastasia H. Potts, Yinping Guo, Brian M. M. Ahmer, and Tony Romeo. Role of csra in
stress responses and metabolism important for salmonella virulence revealed by integrated tran-

41

https://www.biorxiv.org/content/early/2017/10/27/207092
https://www.biorxiv.org/content/early/2017/10/27/207092
https://arxiv.org/abs/https://www.biorxiv.org/content/early/2017/10/27/207092.full.pdf
https://doi.org/10.1101/207092
http://dx.doi.org/10.1093/bioinformatics/bty350
https://arxiv.org/abs//oup/backfile/content_public/journal/bioinformatics/pap/10.1093_bioinformatics_bty350/2/bty350.pdf
https://doi.org/10.1093/bioinformatics/bty350
https://doi.org/10.1371/journal.pone.0211430
https://doi.org/10.1371/journal.pone.0211430
http://dx.doi.org/10.1093/nar/gkx1098
https://arxiv.org/abs//oup/backfile/content_public/journal/nar/46/d1/10.1093_nar_gkx1098/2/gkx1098.pdf
https://doi.org/10.1093/nar/gkx1098
https://www.biorxiv.org/content/early/2017/10/27/207092
https://www.biorxiv.org/content/early/2017/10/27/207092
https://arxiv.org/abs/https://www.biorxiv.org/content/early/2017/10/27/207092.full.pdf
https://doi.org/10.1101/207092
http://dx.doi.org/10.1093/bioinformatics/bty350
https://arxiv.org/abs//oup/backfile/content_public/journal/bioinformatics/pap/10.1093_bioinformatics_bty350/2/bty350.pdf
https://doi.org/10.1093/bioinformatics/bty350

HRIBO Documentation, Release 1.4.4

scriptomics. PLOS ONE, 14(1):1–30, 01 2019. URL: https://doi.org/10.1371/journal.pone.0211430,
doi:10.1371/journal.pone.0211430.

[ZAA+18] Daniel R Zerbino, Premanand Achuthan, Wasiu Akanni, M Ridwan Amode, Daniel Barrell, Jyothish
Bhai, Konstantinos Billis, Carla Cummins, Astrid Gall, Carlos García Girón, Laurent Gil, Leo Gordon,
Leanne Haggerty, Erin Haskell, Thibaut Hourlier, Osagie G Izuogu, Sophie H Janacek, Thomas
Juettemann, Jimmy Kiang To, Matthew R Laird, Ilias Lavidas, Zhicheng Liu, Jane E Loveland, Thomas
Maurel, William McLaren, Benjamin Moore, Jonathan Mudge, Daniel N Murphy, Victoria Newman,
Michael Nuhn, Denye Ogeh, Chuang Kee Ong, Anne Parker, Mateus Patricio, Harpreet Singh Riat,
Helen Schuilenburg, Dan Sheppard, Helen Sparrow, Kieron Taylor, Anja Thormann, Alessandro
Vullo, Brandon Walts, Amonida Zadissa, Adam Frankish, Sarah E Hunt, Myrto Kostadima, Nicholas
Langridge, Fergal J Martin, Matthieu Muffato, Emily Perry, Magali Ruffier, Dan M Staines, Stephen J
Trevanion, Bronwen L Aken, Fiona Cunningham, Andrew Yates, and Paul Flicek. Ensembl 2018.
Nucleic Acids Research, 46(D1):D754–D761, 2018. URL: http://dx.doi.org/10.1093/nar/gkx1098,
arXiv:/oup/backfile/content_public/journal/nar/46/d1/10.1093_nar_gkx1098/2/gkx1098.pdf,
doi:10.1093/nar/gkx1098.

[GruningDSjodin+17] Björn Grüning, Ryan Dale, Andreas Sjödin, Jillian Rowe, Brad A. Chapman, Christopher H.
Tomkins-Tinch, Renan Valieris, and Johannes Köster. Bioconda: a sustainable and comprehensive
software distribution for the life sciences. bioRxiv, 2017. URL: https://www.biorxiv.org/content/
early/2017/10/27/207092, arXiv:https://www.biorxiv.org/content/early/2017/10/27/207092.full.pdf,
doi:10.1101/207092.

[KosterR18] Johannes Köster and Sven Rahmann. Snakemake—a scalable bioinformatics workflow en-
gine. Bioinformatics, ():bty350, 2018. URL: http://dx.doi.org/10.1093/bioinformatics/bty350,
arXiv:/oup/backfile/content_public/journal/bioinformatics/pap/10.1093_bioinformatics_bty350/2/bty350.pdf,
doi:10.1093/bioinformatics/bty350.

[PGAR19] Anastasia H. Potts, Yinping Guo, Brian M. M. Ahmer, and Tony Romeo. Role of csra in
stress responses and metabolism important for salmonella virulence revealed by integrated tran-
scriptomics. PLOS ONE, 14(1):1–30, 01 2019. URL: https://doi.org/10.1371/journal.pone.0211430,
doi:10.1371/journal.pone.0211430.

[ZAA+18] Daniel R Zerbino, Premanand Achuthan, Wasiu Akanni, M Ridwan Amode, Daniel Barrell, Jyothish
Bhai, Konstantinos Billis, Carla Cummins, Astrid Gall, Carlos García Girón, Laurent Gil, Leo Gordon,
Leanne Haggerty, Erin Haskell, Thibaut Hourlier, Osagie G Izuogu, Sophie H Janacek, Thomas
Juettemann, Jimmy Kiang To, Matthew R Laird, Ilias Lavidas, Zhicheng Liu, Jane E Loveland, Thomas
Maurel, William McLaren, Benjamin Moore, Jonathan Mudge, Daniel N Murphy, Victoria Newman,
Michael Nuhn, Denye Ogeh, Chuang Kee Ong, Anne Parker, Mateus Patricio, Harpreet Singh Riat,
Helen Schuilenburg, Dan Sheppard, Helen Sparrow, Kieron Taylor, Anja Thormann, Alessandro
Vullo, Brandon Walts, Amonida Zadissa, Adam Frankish, Sarah E Hunt, Myrto Kostadima, Nicholas
Langridge, Fergal J Martin, Matthieu Muffato, Emily Perry, Magali Ruffier, Dan M Staines, Stephen J
Trevanion, Bronwen L Aken, Fiona Cunningham, Andrew Yates, and Paul Flicek. Ensembl 2018.
Nucleic Acids Research, 46(D1):D754–D761, 2018. URL: http://dx.doi.org/10.1093/nar/gkx1098,
arXiv:/oup/backfile/content_public/journal/nar/46/d1/10.1093_nar_gkx1098/2/gkx1098.pdf,
doi:10.1093/nar/gkx1098.

42 Bibliography

https://doi.org/10.1371/journal.pone.0211430
https://doi.org/10.1371/journal.pone.0211430
http://dx.doi.org/10.1093/nar/gkx1098
https://arxiv.org/abs//oup/backfile/content_public/journal/nar/46/d1/10.1093_nar_gkx1098/2/gkx1098.pdf
https://doi.org/10.1093/nar/gkx1098
https://www.biorxiv.org/content/early/2017/10/27/207092
https://www.biorxiv.org/content/early/2017/10/27/207092
https://arxiv.org/abs/https://www.biorxiv.org/content/early/2017/10/27/207092.full.pdf
https://doi.org/10.1101/207092
http://dx.doi.org/10.1093/bioinformatics/bty350
https://arxiv.org/abs//oup/backfile/content_public/journal/bioinformatics/pap/10.1093_bioinformatics_bty350/2/bty350.pdf
https://doi.org/10.1093/bioinformatics/bty350
https://doi.org/10.1371/journal.pone.0211430
https://doi.org/10.1371/journal.pone.0211430
http://dx.doi.org/10.1093/nar/gkx1098
https://arxiv.org/abs//oup/backfile/content_public/journal/nar/46/d1/10.1093_nar_gkx1098/2/gkx1098.pdf
https://doi.org/10.1093/nar/gkx1098

	HRIBO
	Introduction
	Program flowchart
	Requirements
	Tools
	miniconda3
	snakemake
	singularity
	HRIBO

	Input files
	annotation.gff and genome.fa
	input .fastq files
	Sample sheet and configuration file
	cluster.yaml

	Output files
	Single-file Output
	Multi-file Output

	Tool Parameters
	Report
	Example-workflow
	References

	Workflow configuration
	Default workflow
	No differential expression
	Activating DeepRibo
	If you run deepribo locally
	If you run deepribo on a cluster system

	Paired-end support

	Analysis result files
	ORF Predictions
	predictions_reparation.xlsx
	predictions_reparation.gff
	predictions_deepribo.xlsx
	predictions_deepribo.gff

	Quality control
	multiqc_report.html
	heatmap_SpearmanCorr_readCounts.pdf
	annotation_total.xlsx
	total_read_counts.xlsx
	annotation_unique.xlsx
	unique_read_counts.xlsx

	genome-browser
	updated_annotation.gff
	potentialStartCodons.gff
	potentialStopCodons.gff
	potentialRibosomeBindingSite.gff
	potentialAlternativeStartCodons.gff
	BigWig coverage files

	Differential Expression
	riborex/<contrast>_sorted.xlsx
	riborex/<contrast>_significant.xlsx
	xtail/<contrast>_sorted.xlsx
	xtail/<contrast>_significant.xlsx
	xtail/r_<contrast>.pdf
	xtail/fc_<contrast>.pdf

	Metagene Analysis
	<accession>_Z.Y_profiling.xlsx/tsv
	<accession>_Z.Y_profiling.pdf

	Additional output
	samples.xlsx
	manual.pdf
	overview.xlsx

	Example workflow
	Setup
	Retrieve and prepare input files
	Annotation and genome files
	.fastq files
	Sample sheet and configuration file

	Running the workflow
	Run the workflow locally
	Run Snakemake in a cluster environment
	Example: Run Snakemake in a cluster environment

	Results
	Runtime
	References

	Extended workflow
	Setup
	Retrieve and prepare input files
	Annotation and genome files
	.fastq files
	Sample sheet and configuration file

	Running the workflow
	Run the workflow locally
	Run Snakemake in a cluster environment
	Example: Run Snakemake in a cluster environment

	Results
	Runtime
	References

	Frequently asked questions
	Q: When using singularity I get ERROR : Failed to set effective UID to 0.

	Bibliography

